2014.2.13 20:01
Follow up for N-Queens problem.
Now, instead outputting board configurations, return the total number of distinct solutions.
Solution:
This problem is a simplification from the . This time we only have record the number of solutions.
Time complexity is O(n!). Space complexity is O(n!) as well, which comes from parameters in recursive function calls.
Accepted code:
1 // 3CE, 1AC, why so hasty? 2 class Solution { 3 public: 4 int totalNQueens(int n) { 5 a = nullptr; 6 if (n <= 0) { 7 return 0; 8 } 9 10 res_count = 0;11 a = new int[n];12 solveNQueensRecursive(0, a, n);13 delete[] a;14 15 return res_count;16 }17 private:18 int *a;19 int res_count;20 21 void solveNQueensRecursive(int idx, int a[], const int &n) {22 if (idx == n) {23 // one solution is found24 ++res_count;25 return;26 }27 28 int i, j;29 // check if the current layout is valid.30 for (i = 0; i < n; ++i) {31 a[idx] = i;32 for (j = 0; j < idx; ++j) {33 if (a[j] == a[idx] || myabs(idx - j) == myabs(a[idx] - a[j])) {34 break;35 }36 }37 if (j == idx) {38 // valid layout.39 solveNQueensRecursive(idx + 1, a, n);40 }41 }42 }43 44 int myabs(const int x) {45 return (x >= 0 ? x : -x);46 }47 };